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CESSION OF RIGHTS

AUTHOR NAME: Rodrigo Badia Piccinini

PUBLICATION TITLE: Eulerian-Lagrangian simulation of a turbulent evaporating spray.

TYPE OF PUBLICATION/YEAR: Thesis / 2011

It is granted to Aeronautics Institute of Technology permission to reproduce copies of

this thesis and to only loan or to sell copies for academic and scientific purposes. The

author reserves other publication rights and no part of this thesis can be reproduced

without the authorization of the author.

Rodrigo Badia Piccinini

Rua Mal Andrea, 238, apto 401, Pituba.

CEP 41810-105 – Salvador–BA



EULERIAN-LAGRANGIAN SIMULATION OF A

TURBULENT EVAPORATING SPRAY

Rodrigo Badia Piccinini

Thesis Committee Composition:
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Agradeço às comunidades de código aberto que mantêm softwares de qualidade disponi-

bilizados sem custo pelo simples esṕırito de colaboração.
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Resumo

Este trabalho consistiu na simulação numérica de um spray: um escoamento bifásico

composto por uma fase gasosa e uma fase ĺıquida. A fase gasosa é tratada como um meio

cont́ınuo, e a fase ĺıquida é tratada com um conjunto de gotas dispersas na fase gasosa.

Foi aplicada a aproximação assintótica de baixo número de Mach para a fase gasosa com o

objetivo de modelar variações da densidade causadas por gradientes de temperatura sem

o envolvimento de complicações existentes na formulação de um escoamento compresśıvel.

Os efeitos da turbulência na fase gasosa foram modelados utilizando o conceito de viscosi-

dade turbulenta governada por duas equações diferenciais que compõe o assim denominado

modelo k-epsilon. A fase ĺıquida dispersa foi modelada como part́ıculas-pontos, às quais

são atribúıdas propriedades termodinâmicas e modelos 0-d para cálculos de transferên-

cia de momento, energia e massa. A fase gasosa foi discretizada segundo o método de

volumes finitos. Os resultados numéricos foram comparados com medições experimentais

e indicaram que a metodologia utilizada descreve razoavelmente bem o spray. Foram

verificadas, porém, subestimativas da velocidade e da taxa de evaporação das gotas com

relação às medições experimentais.



Abstract

This work consists in a numerical simulation of a spray jet: a two-phase flow composed

by a gaseous and a liquid phase. The gaseous phase is treated as a continuous medium, and

the liquid phase is treated as a dispersed phase. An asymptotic approximation of zero Mach

number was applied to the gaseous phase in order to account for density variations due

to temperature gradients without dealing with extra complexities of the fully compressible

flow formulation. The effects of turbulence on the gas flow were modeled using the concept

of turbulent viscosity determined by a system of two partial differential equations, the

so called k-epsilon model. The liquid dispersed phase was modeled as point-particles, to

whom thermodynamic properties and 0-d models for momentum, heat and mass transfers

were assigned. The gaseous phase was discretized and numerically solved using the finite

volume method. The numerical results were compared to measurements and a reasonable

prediction was found. It was verified, though, underestimations of droplet velocity and

evaporation rate.
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1 Introduction

1.1 Motivation

The study of spray jets is important for several technical applications: gas turbines,

furnaces, automotive and rocket engines. An extensive presentation of spray applications

may be found in (LIU, 2000), but any equipment or transportation powered by the com-

bustion of a liquid fuel has its design, efficiency and environmental impact challenged by

the proper description of processes such as: liquid atomization, droplet transport, inter-

phase transfers and vapor mixing with oxygen. Notwithstanding the expected complexity

of all said, spray jets are often turbulent.

Studying the spray jet by means of computer modeling alongside with experimentation

is still a growing activity in industry, specially in what concerns brazilian activities. One

notable difficulty is the requirement of expensive computational and laboratorial resources

as well as capable professionals to operate them, and there is always doubt about how

predictive/descriptive computations/experiments may be.

Undoubtful are, though, the benefits that society might receive from the evolution of

technical applications: fuel flexibility, lower emission levels, higher work efficiency, safer

operability.
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1.2 Objective

This thesis has the following objectives:

• Implement a low Mach number formulation to allow modeling of gas density varia-

tions due to high temperature gradients while neglecting fluid compressibility.

• Review some existent models for droplet-gas heat, mass and momentum transfers

under the framework of RANS1 modeling for gas turbulence;

• Compare computed quantities to measurements reported in the literature such as

droplet velocity and diameter, vapor and liquid mass flux, gas velocity and turbu-

lence properties.

1.3 The Spray Jet and the Lagrangian Point-Particle

Method

A spray jet is a particular case of a dispersed multiphase flow originated by the

instabilization of a liquid jet emerging in a gaseous atmosphere. The spray is composed

by a continuous gaseous phase and a dispersed phase of liquid droplets.

Differently from many multiphase flows where the description of phase interfaces is

of great importance, in the dispersed regime it is the volume fraction of each phase the

determinant factor of their interaction. The liquid volume fraction in spray jets may span

from low or dilute (φv,l < 10−3) to high or dense (φv,l > 10−3).

In dilute sprays, the dynamics of liquid droplets is mainly governed by the gas turbu-

1RANS: Reynolds-averaged Navier-Stokes equations.
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lence. Modeling such sprays may be concentrated on modeling the gas effect on droplets

and neglecting the droplet effect on the gas (one-way coupling) or taking both ways into

account (two-way coupling). For dense sprays, however, the interaction between droplets

(collision and coalescence) become important and must also be modeled (four-way cou-

pling). A review on the computational approaches for different volume fractions is given

in (BALACHANDAR; EATON, 2010).

This work deals with a dilute spray (φv,l ≈ 2.1× 10−5). A two-way coupling modeling

was used for averaged flow properties and a one-way coupling was used for turbulence

modeling; that is, no direct influence of droplets is present in the turbulence model equa-

tions and they are identical to those for a pure gaseous flow.

In the modeling formulation used in this work, the droplets were treated as point-

particles with assigned properties and instead of tracking an interface, the problem is to

track the droplet position in the domain. The Lagrangian point-particle nomenclature

comes from the fact that droplet motion is described by ordinary differential equations

written in a Lagrangian reference frame. This, coupled with the gaseous phase being

modeled by partial differential equations in an Eulerian refence frame is what is called the

Eulerian-Lagrangian description of the spray.

The interaction droplet-gas is done by computing source/sink terms to the gaseous

equations and the correct droplet position must be known to correctly distribute the spray

source terms in the gas flow. The more droplets are represented in the domain, smoother

are the computed source terms.
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1.4 Low Mach Number Approximation

In a subsonic flow at low Mach number, pressure variations affect the continuity

equation much more by changing the velocity field than by changing the fluid density. If

heat transfer is present, though, temperature variations may cause considerable variations

in fluid density; and continuity, momentum and energy equations must be solved in a

coupled manner. Solving the equations in the original compressible formulation adds

unwanted difficulties to the numerical solver and requires extra care with the boundary

conditions to avoid wave interferences in the solution (POINSOT; VEYNANTE, 2005).

One possible approach is the Boussinesq simplification, which neglects density varia-

tions everywhere except in the buoyancy term in the momentum equation. This decouples

the energy equation from both the momentum and continuity equations, but it is limited

to low temperature differences of about 15K (FERZIGER; PERIĆ, 1999).

In the case of a spray jet, temperature variations may be much higher and mass source

terms are present due to droplet evaporation. Neglecting local changes in density may

thus cause significant errors in the solution.

A possible way to overcome the limitations of the Boussinesq approximation and

the complexity of the fully compressible formulation is the asymptotic approximation of

zero Mach number for the Navier-Stokes equations. The simplified equations have been

formally derived in (MAJDA; SETHIAN, 1985) and are further discussed in (MULLER,

1999) and (VIOZAT, 1997).

For the spray jet studied in this thesis, the maximum Mach number is found in the

nozzle exit and it is less than 0.1.
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1.5 Droplet Evaporation

A comprehensive text on droplet evaporation and heating is presented in (SIRIG-

NANO; EDWARDS, 2000), where some covered topics are the case of a single and spheri-

cally symmetric droplet in a quiescent gas, the effect of gas convection around the droplet,

the extra complexities of a multi-component liquid droplet, droplet behavior near critical

conditions and the heating and evaporation of a group of droplets nearly located.

As previously mentioned, this thesis deals with a dilute spray and thus droplets are

considered to heat and vaporize similarly to a single and isolated droplet. The effects of

gas convection are taken into account using empirically established laws. The liquid phase

has one single component (acetone) and the droplets are far from critical conditions.

Some more simplifications are made regarding the radial transport of heat inside the

droplet. They will be discussed as the heating and the evaporation models are presented,

in Chapter 2.

1.6 Turbulence and Droplet Submodels

Apart all the implications concerning a multiphase flow, a spray jet is often turbulent,

and the correct prediction of its evolution is dependent on how turbulence is modeled. It

was said that the choice of the Lagrangian point-particle method to model the dispersed

phase was based on the low liquid volume fraction. A second precaution is also very

important when choosing the turbulence modeling for the gaseous flow and the dispersion

modeling for the droplets. For spray jets where droplet Stokes number is very low (St <<

1), see (CROWE; CHUNG; TROUTT, 1988) for the definition, the droplets are likely to
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FIGURE 1.1: Effect of Stokes number on particle dispersion in large-scale turbulent
structures, reproduced from (CROWE; CHUNG; TROUTT, 1988).

completely follow oscillations in gas velocity and the interaction with turbulence is strong.

For such sprays, RANS modeling is likely to fail in predicting droplet motion and dis-

persion2 because the interaction with eddies will be restricted to some submodel. The sub-

ject of turbulent dispersed multiphase flow is reviewed by (BALACHANDAR; EATON,

2010) and the most important implications in droplet motion and evaporation are dis-

cussed in (SIRIGNANO; EDWARDS, 2000).

In this work, the jet Reynolds number is not high (Re = 16, 300) and the Stokes

number is (St ∈ [1, 100]) with an average of 10. It is verified in Chapter 5 that the

stochastic subgrid model used together with the traditional k-epsilon model was able to

predict some dispersion in droplet velocities.

For the gas phase, it is a known fact that the k-epsilon model must have its coefficients

tunned for improved accuracy in predicting the velocity field of a turbulent round jet.

However, the exact modifications are not known a priori and this work has used the

usual coefficients. The consequences of this setup are discussed in Chapter 5.

2Dispersion in the context of a spray is used in a similar sense to that in waves. It means that droplet
velocity will be significantly dependent on its diameter as wave velocity would be dependent on frequency
or wavenumber.
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1.7 Thesis Outline

Chapter 2 presents the governing equations for both the continuous and dispersed

phases and the type of boundary conditions. The continuous phase section starts with the

fully compressible flow formulation, proceeds with the low Mach number approximation

and then the averaging process of the turbulence modeling. The dispersed phase section

describes the Lagrangian point-particle method and derives the models for momentum,

heat and mass transfer between the droplets and the gas phase.

Chapter 3 briefly describes the experiment of (CHEN; STÅRNER; MASRI, 2006),

which was used to evaluate the numerical results. It also presents the boundary conditions

for the simulation obtained from the available experimental data.

Chapter 4 presents some aspects of the numerical solution such as the equation dis-

cretization schemes, the algorithms for solving linear systems and the mesh grid used for

the domain discretization.

Chapter 5 presents the results and discussions. The first section presents the results

for the properties of the gas phase turbulent jet: the spread rate and the self-similar

profiles. The second section presents the results for droplet and gas velocities. The third

section presents the mass fluxes of liquid and vapor and the droplet Sauter mean diameter.

Chapter 6 summarizes the conclusions and suggestions for future work.

Appendix A.1 shows the derivation of the conservation equation of sensible enthalpy

starting from the total energy equation.

Appendix A.2 show 2D Figures of droplet and gas properties.

Appendix A.3 briefly describes equation discretization and PISO algorithm.



2 Governing Equations

This chapter presents the governing equations for continuous and dispersed phases.

Continuous phase equations start from the compressible formulation found in (POINSOT;

VEYNANTE, 2005) with the additional spray source terms. It then proceeds with the

low Mach number approximation proposed in (MAJDA; SETHIAN, 1985). Finally, the

turbulence model is presented with the extra assumptions concerning the turbulent fluxes.

Dispersed phase equations are basically those presented in (NORDIN, 2001) and fur-

ther discussed in (SOMMERFELD, 2000), (WAKIL; UYEHARA; MYERS, 1954) and

(BAUMGARTEN, 2006).

2.1 Continuous (Gaseous) Phase

The continuous phase is the denomination for all gaseous phase in the flow domain.

The set of governing equations is composed by mass, species, momentum, energy and

state equations. The dispersed phase will contribute with source/sink terms for each of

the gaseous phase equations and extra closure relations will be used to account for all the

phenomena complexity e.g. turbulence and species diffusion.

All unknowns (ρ, Yk,U, T ) are functions of position and time, e.g. U = U(x, t). For
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notation reduction, however, the function arguments will be omitted.

2.1.1 Fully Compressible Formulation

The mass (or continuity) equation for a compressible flow with the spray source term

Sm is

∂ρ

∂t
+∇ · (ρU) = Sm . (2.1)

Remark. Since mass equation is not homogeneous due to the presence of the spray source

term, the traditional non-conservative form of the equations must be modified. For an

intensive property η,

∂ρη

∂t
+∇ · (ρUη) =

∂ρ

∂t
η + ρ

∂η

∂t
+ ρU · ∇η + η∇ · (ρU)

= ρ

(
∂η

∂t
+ U · ∇η

)
+ η

[
∂ρ

∂t
+∇ · (ρU)

]
= ρ

(
∂η

∂t
+ U · ∇η

)
+ ηSm .

(2.2)

Species equation with the spray source term SY k is

∂ρYk
∂t

+∇ · (ρ (U + Vk)Yk) = SY k , (2.3)

where Vk is the diffusion velocity of species k satisfying
∑

k VkYk = 0.

The diffusion velocities will be obtained under the approximation of a dilute mixture

in which one of the species has a considerably higher concentration relative to the others.

This is the case for the spray evaporation into an air atmosphere, where 76.7% of air mass

composition is nitrogen.



CHAPTER 2. GOVERNING EQUATIONS 29

If M − 1 species are present in scarce quantities relative to the last species denoted

by M , then these M − 1 species diffuse as in a binary mixture:

VkYk = −Dk∇Yk , k = 1, 2, ...,M − 1 , (2.4a)

VMYM =
M−1∑
k=1

Dk∇Yk , (2.4b)

where Dk is the binary diffusion coefficient of species k and does not need to be the same

for all species.

The scarce species transport equation is then:

∂ρYk
∂t

+∇ · (ρYkU) = ∇ · (ρDk∇Yk) + SY k , k = 1, 2, ...,M − 1. (2.5)

YM is obtained from the fact that
∑

k Yk = 1,

YM = 1−
M−1∑
k=1

Yk . (2.6)

The momentum equation is written with the assumption of a compressible Newtonian

fluid (BATCHELOR, 2000) and includes the gravitational field g and the spray source

term Smom.

∂ρU

∂t
+∇ · (ρUU) = −∇p+∇ · τ + ρg + Smom , (2.7)

where τ is the corresponding viscous stress tensor

τ = 2µ

[
S− 1

3
(∇ ·U) I

]
, (2.8)
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and S is the strain tensor:

S =
1

2

(
∇U +∇UT

)
. (2.9)

Notation. ∇U = ∂ui/∂xj where ui denotes the components of U. Similarly, ∇UT =

∂uj/∂xi. I denotes the identity tensor.

The energy equation might be written in several different forms (see (POINSOT;

VEYNANTE, 2005), chapter 1). Here, the sensible enthalpy formulation will be preferred.

The sensible enthalpy is defined as hs = h −
∑

k ∆h0
f,kYk =

∫ T
T0
cpdT , where h is the

enthalpy and ∆h0
f,k is the enthalpy of formation of species k at the reference temperature

T0.

∂ρhs
∂t

+∇ · (ρhsU) =
Dp

Dt
+∇ · Js + τ : ∇U + Shs , (2.10)

Shs is the spray enthalpy source term. Js includes heat conduction and the enthalpy

diffusion vector:

Js = κ∇T − ρ
M∑
k=1

hs,kVkYk . (2.11)

With the assumptions made for species diffusion in (2.4), Js becomes

Js = κ∇T + ρ

M−1∑
k=1

(hs,k − hs,M)Dk∇Yk . (2.12)

Notation. τ : ∇U reads in tensorial notation as following:

τ : ∇U = 2µ

[
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

(
∂ui
∂xi

)
δij

]
∂ui
∂xj

, (2.13)

δij is the Kronecker delta.
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Constant pressure specific heat capacity for species k is denoted by cp,k. Similarly,

constant volume specific heat capacity for species k is cv,k. The same quantities for the

gaseous mixture and the corresponding γ constant are then

cp =
∑
k

cp,kYk , (2.14a)

cv =
∑
k

cp,kYk , (2.14b)

γ = cp/cv . (2.14c)

The gas mixture is assumed to be an ideal gas mixture and the state equation is given by

p =
γ − 1

γ
ρcpT =

1

W
ρRT , (2.15)

where

1

W
=

(∑
k

Yk
Wk

)
. (2.16)

2.1.2 Non-Dimensional Equations

All equations may be written in non-dimensional form once reference quantities are

defined.

• Distance is given in units of nozzle diameter Djet;

• Velocity is given in units of average axial velocity at nozzle exit U∗;

• Time is given in units of Djet/U
∗;

• Temperature is given in units of ambient temperature T∞;
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• Pressure is given in units of ambient pressure p∞;

• Mass fractions are already non-dimensional;

• Molar mass of species k, Wk, is given in units of ambient air molar mass W∞;

• Density is given in units of ρ∞ = p∞W∞/RT∞;

• cp is given in units of air cp at conditions (p∞, T∞), or cp,∞. γ∞ is cp/cv for the air

at the same conditions;

• hs is given in units of cp,∞T∞.

• Dk, µ and κ are given in units of their values at ambient conditions: Dk,∞, µ∞ and

κ∞.

• g is one unit of the constant gravitational field.

The following non-dimensional parameters are also defined:

Re =
ρ∞U

∗Djet

µ∞
, (2.17a)

M =
U∗√

γ∞RT∞
=

U∗√
γ∞p∞/ρ∞

, (2.17b)

Pr =
µ∞cp,∞
κ∞

, (2.17c)

Lek =
κ∞

ρ∞cp,∞Dk,∞
, (2.17d)

Sck =
µ∞

ρ∞Dk,∞
= PrLek , (2.17e)

Fr =
U∗√
gDjet

. (2.17f)

Equations are then rewritten in terms of non-dimensional quantities.
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State equation:

p = ρT

(∑
k

Yk
Wk

)
=
ρT

W
. (2.18)

Mass equation:

∂ρ

∂t
+∇ · (ρU) = Sm . (2.19)

Species equation:

∂ρYk
∂t

+∇ · (ρUYk) =
1

ReSck
∇ · (ρDk∇Yk) + SY k , k = 1, 2, ...,M − 1 . (2.20a)

YM = 1−
M−1∑
k=1

Yk . (2.20b)

Momentum equation:

∂ρU

∂t
+∇ · (ρUU) = − 1

γ∞M2
∇p+

1

Re
∇ · τ +

ρ

Fr2

g

|g|
+ Smom . (2.21)

Energy equation:

∂ρhs
∂t

+∇ · (ρUhs) =
γ∞ − 1

γ∞

Dp

Dt
+∇ · Js

+M2 (γ∞ − 1)

(
τ : ∇U

Re

)
+ Shs ,

(2.22)

where τ is the shear stress tensor

τ = 2µ

[
S− 1

3
(∇ ·U) I

]
, (2.23)
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I is the identity tensor and S is the strain tensor

S =
1

2

(
∇U +∇UT

)
. (2.24)

Js is the heat conduction and the sensible enthalpy diffusion:

Js =
κ

RePr
∇T +

M−1∑
k=1

ρDk
ReSck

(hs,k − hs,M)∇Yk . (2.25)

2.1.3 Low Mach Number Approximation

Consider the following definitions (VIOZAT, 1997):

A compressible flow is a flow in which density depends on pressure and

temperature.

A dilatable flow is a flow in which density depends on temperature.

The gas flow considered in this work is fairly incompressible, indeed the local Mach

number is below 0.1 throughout the flow domain. However, the intense heat and mass

transfers between gaseous and liquid phases when spray is present produce large temper-

ature gradients which cause density to vary considerably and the two-phase flow may be

classified as a dilatable flow in the sense of the definition above.

An important difference between incompressible and dilatable flows is that ∇ ·U = 0

does not hold for the latter.

A common treatment for dilatable flows is the low Mach number approximation, which

consists in expanding unknown quantities p, Yk, U and T in Equations (2.1), (2.7) and
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(2.10) into power series of ξ ≡ √γ∞M :

p = p0 + p1ξ + p2ξ
2 +O

(
ξ3
)
, (2.26a)

Yk = Yk,0 +O (ξ) , (2.26b)

U = U0 +O (ξ) , (2.26c)

T = T0 +O (ξ) . (2.26d)

The reason for expanding pressure up to the second order while keeping only the

leading (or zeroth) order for the other variables is discussed in (MULLER, 1999), but it

is essentially because of the M−2 factor in momentum equation (2.21).

The dependence of the spray source terms on the flow variables is also considered only

for the leading order.

ρ0 is obtained by substitution of (2.26) into the non-dimensional state equation. ρ0 is

such that

p0 = ρ0T0

(∑
k

Yk,0
Wk

)
=
ρ0T0

W0

. (2.27)

Mass equation (2.19) of order ξ0 becomes:

∂ρ0

∂t
+∇ · (ρ0U0) = Sm . (2.28)

Species equation (2.20) of order ξ0 is:

∂ρ0Yk,0
∂t

+∇ · (ρ0U0Yk,0) =
1

ReSck
∇ · (ρDk∇Yk,0) + SY k , k = 1, 2, ...,M − 1 . (2.29a)

YM,0 = 1−
M−1∑
k=1

Yk,0 . (2.29b)
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The momentum equation gives information of orders ξ−2, ξ−1 and ξ0 due to the

presence of the coefficient 1/ξ2 in the pressure gradient . The resulting equations are,

respectively,

∇p0 ≡ 0 , (2.30a)

∇p1 ≡ 0 , (2.30b)

∂ρ0U0

∂t
+∇ · (ρ0U0U0) = −∇p2 +

1

Re
∇ · τ0 +

ρ0

Fr2

g

|g|
+ Smom . (2.30c)

From ∇p0 ≡ ∇p1 ≡ 0, it is observed that p0 and p1 are functions of time only,

p0 = p0(t) and p1 = p1(t). The coupling between velocity and pressure fields is now

separated into two contributions: p2 establishes the pressure gradient and will be referred

to as the dynamic pressure; p0 affects ρ0 via the state equation and will be referred to as

the thermodynamic pressure.

The energy equation reads

∂ρ0hs0
∂t

+∇ · (ρ0U0hs0) =
γ∞ − 1

γ∞

Dp0

Dt
+∇ · Js0 + Shs , (2.31)

where

Js0 =
κ

RePr
∇T0 +

M−1∑
k=1

ρDk
ReSck

(hs0,k − hs0,M)∇Yk,0 . (2.32)

An ordinary differential equation in time may be derived for computing the thermo-

dynamic pressure (p0) by differentiating the state equation (2.27) with respect to time

and integrating in domain volume:

Dp0

Dt

∫
Ω

WdV + p0

∫
Ω

DW

Dt
dV =

∫
Ω

DρT

Dt
dV , (2.33)
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where

D

Dt
=

∂

∂t
+ U · ∇ (2.34)

is the total derivative.

Each total derivative may be computed from mixture molar mass (W ) definition and

mass, species and enthalpy equations.

For an infinite (or open) domain Ω,

∫
Ω

DW

Dt
dV <∞ ,

∫
Ω

DρT

Dt
dV <∞ and

∫
Ω

WdV =∞ . (2.35)

Hence, Dp0/Dt = 0 and p0 = 1, the non-dimensional pressure in far-field boundary.

Herein, the subscripts denoting the order of expansion will be omitted, except for the

pressure. U0 is simply U and the same holds to ρ, Yk, hs and T . For pressure, p0 is the

thermodynamic pressure and p2 is the dynamic pressure.

2.1.4 Turbulence Modeling

The expression turbulent and evaporating spray entitling this work refers to a liquid

spray evolving in a gaseous turbulent flow where mass, energy and momentum transfers

between both phases are strongly affected by turbulence.

Among all possible treatments for turbulent flows, see (POPE, 2000), one is perhaps

the most widely used in industrial applications: the so called standard k-epsilon model.

This two-equation model within the RANS (Reynolds-averaged Navier-Stokes) framework

provides a good compromise between complexity and computational cost for those not

using exceptional computational resources.
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In the context of RANS modeling, the governing equations are averaged and solved

for the mean values of flow properties. The effect of turbulence on the mean field is

accounted by modeling the terms depending on the fluctuations. In the specific case of the

momentum equation, the hypothesis of turbulent-viscosity (or Boussinesq hypothesis) is

used to compute an effective value of local viscosity composed by molecular and turbulent

viscosities, being the latter an approximation of the extra momentum flux of Reynolds

stresses.

For compressible flows, two averages are commonly used: the simple time average and

a mass-weighted time average (or Favre average), see (FAVRE, 1969). The time average

(f̄) and the deviation (f ′) of a quantity f are defined as

f̄(x, t) ≡ 1

T

∫ t+T

t

f(x, τ)dτ and f ′(x, t) = f(x, t)− f̄(x, t) . (2.36)

The mass-weighted average (or Favre average) (f̃) and the deviation (f ′′) are defined

as

f̃(x, t) =
ρf(x, t)

ρ̄
and f

′′
(x, t) = f(x, t)− f̃(x, t) . (2.37)

Following the definitions,

f ′ = f̄ − f̄ = 0 and ¯̄f = f̄ , (2.38)

f̃ ′′ = f̃ − f̃ = 0 and ˜̃f = f̃ . (2.39)

Averaging and differential operators are assumed to commute, see (POPE, 2000).
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2.1.4.1 Mass and Species Equations

Averaged mass and species equations are easily obtained. The averaged mass equation

reads:

∂ρ̄

∂t
+∇ ·

(
ρ̄Ũ
)

= S̄m . (2.40)

The species averaged equation reads:

∂ρ̄Ỹk
∂t

+∇·
(
ρ̄ŨỸk + ρ̄Ũ′′Y ′′k

)
=

1

ReSck
∇·
(
ρDk∇Yk

)
+S̄Y k , k = 1, 2, ...,M−1 , (2.41a)

ỸM = 1−
M−1∑
k=1

Ỹk . (2.41b)

Equation (2.41) shows two new terms: ρDk∇Yk and ρ̄Ũ′′Y
′′
k . Unless new equations are

derived for them, both terms are not known and must be modeled.

For the first one, regarding the laminar diffusivity of species, the average is commonly

approximated as shown below:

ρDk∇Yk ≈ ρ̄Dk∇Ỹk . (2.42)

For the second term, which deals with turbulent flux, an approach analogous to

turbulent-viscosity is used and a turbulent coefficient for species diffusion (Dk,t) is used:

ρ̄Ũ′′Y
′′
k ≈ −

ρ̄Dk,t
ReSck

∇Ỹk , (2.43)

Dk,t is computed by the turbulence model.
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The species equation then becomes:

∂ρ̄Ỹk
∂t

+∇·
(
ρ̄ŨỸk

)
=

1

ReSck
∇·
[
ρ̄ (Dk +Dk,t)∇Ỹk

]
+S̄Y k , k = 1, 2, ...,M−1 . (2.44a)

ỸM = 1−
M−1∑
k=1

Ỹk . (2.44b)

2.1.4.2 Momentum Equation

Treatment of momentum equation is more complicated and it is shown in more steps

here. The averaged momentum equation reads:

∂ρ̄Ũ

∂t
+∇ ·

(
ρ̄ŨŨ

)
= −∇p̄2 +∇ ·

( τ̄

Re
− ρ̄Ũ′′U′′

)
+

ρ̄

F r2

g

|g|
+ S̄mom . (2.45)

Again, two terms are new and unknown: τ̄ and −ρ̄Ũ′′U′′. From the definitions of

averages,

τ = τ̃ + τ ′′ ⇒ τ̄ = τ̃ + τ ′′ , (2.46)

and assuming τ̃ � τ ′′, we have:

τ̄ ≈ 2µ

[
S̃ − I

3

(
∇ · Ũ

)]
. (2.47)

The modeling of the turbulent momentum flux is made by the following expression

(known as Boussinesq hypothesis):

−ρ̄Ũ′′U′′ = 2µt
Re

[
S̃ − I

3

(
∇ · Ũ

)]
− 2

3
ρ̄kI . (2.48)
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µt is the turbulent-viscosity accounting for the extra momentum flux due to the

Reynolds stresses (−ρ̄Ũ′′U′′). k is turbulent kinetic energy defined as:

k =
1

2
˜(U′′ ·U′′) . (2.49)

Both µt and k are computed by the turbulence model.

τtot is defined as a “new viscous stress tensor” composed by the laminar and turbulent

part:

τtot ≡ 2(µ+ µt)

[
S̃ − I

3

(
∇ · Ũ

)]
− 2

3
ρ̄kI , (2.50)

and the momentum equation finally becomes:

∂ρ̄Ũ

∂t
+∇ ·

(
ρ̄ŨŨ

)
= −∇p̄2 +

1

Re
∇ · τtot +

ρ̄

F r2

g

|g|
+ S̄mom . (2.51)

2.1.4.3 Sensible Enthalpy Equation

The averaged sensible enthalpy equation reads:

∂ρ̄h̃s
∂t

+∇ ·
(
ρ̄Ũh̃s + ρ̄Ũ′′h′′s

)
=
γ∞ − 1

γ∞

Dp0

Dt
+∇ · J̄s + S̄hs , (2.52)

where

Js =
κ

RePr
∇T +

M−1∑
k=1

ρDk
ReSck

(hs,k − hs,M)∇Yk . (2.53)

Four new terms are unknown and must be modeled as well:

ρ̄Ũ′′h′′s , Dp
Dt

, κ
RePr
∇T and ρDk

ReSck
(hs,k − hs,M)∇Yk.

Turbulent flux of enthalpy is modeled similarly to species and momentum turbulent
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fluxes:

ρ̄Ũ′′h′′s ≈ −
ρ̄αt
RePr

∇h̃s , (2.54)

where αt is the turbulent thermal diffusivity that is also computed by the turbulence

model.

The average of the total derivative Dp/Dt reads:

Dp0

Dt
=
∂p̄0

∂t
+ U · ∇p0 =

∂p̄0

∂t
+
(
Ũ · ∇p̄0

)
+ U′′ · ∇p0 (2.55)

Neglecting the last term (U′′ · ∇p0) gives:

Dp0

Dt
≈ ∂p̄0

∂t
+
(
Ũ · ∇p̄0

)
. (2.56)

For laminar heat diffusion, the effect of fluctuations is neglected and only averaged

terms are considered:

k∇T = k̄∇T̃ + k∇T ′′ ≈ k̄∇T̃ . (2.57)

Under the same assumption:

ρDk
ReSck

(hs,k − hs,M)∇Yk ≈
ρ̄Dk
ReSck

[(
h̃s,k − h̃s,M

)
∇Ỹk

]
. (2.58)

Sensible enthalpy equation finally becomes:

∂ρ̄h̃s
∂t

+∇ ·
(
ρ̄Ũh̃s

)
=
γ∞ − 1

γ∞

[
∂p̄0

∂t
+
(
Ũ · ∇p̄0

)]
+∇ · J̄s + S̄hs , (2.59)
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where

J̄s =
ρ̄ (α + αt)

RePr
∇h̃s +

M−1∑
k=1

ρDk
ReSck

[(
h̃s,k − h̃s,M

)
∇Ỹk

]
. (2.60)

All unclosed terms are now specified if the following parameters are given by the

turbulence model:

k, µt, αt, Dk,t .

Further assumptions are made:

• Unity Schmidt and Prandtl numbers (Sck = Pr = 1) everywhere in the flow domain

for laminar and turbulent fluxes:

ρ̄ (Dk +Dk,t) = ρ̄ (α + αk,t) = µ+ µt . (2.61)

Now, the turbulence model only needs to provide k and µt.

• All species have the same sensible enthalpy:

M−1∑
k=1

ρDk
ReSck

(h̃s,k − h̃s,M)︸ ︷︷ ︸
≈0

∇Ỹk

 = 0 . (2.62)

2.1.4.4 State Equation

Averaged state equation reads:

pW = R(ρT ) = Rρ̄T̃ , (2.63)

where 1/W =
∑

k Yk/Wk.
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The term on the rhs - pW - is simply approximated as

pW = p̄W̃ + pW ′′ ≈ p̄W̃ . (2.64)

2.1.4.5 Relation of Averaged Enthalpy and Temperature

An expression is needed to relate h̃s, which is being solved for in Equation (2.59), to

Favre-averaged temperature (T̃ ). From the definition of hs:

h̃s =
ρhs
ρ̄

=
1

ρ̄

[
ρ

(∫ T

T0

∑
k

cp,k(T )dT

)]
. (2.65)

Using cp =
∑

k cp,kYk, Yk = Ỹk +Y
′′

k and T = T̃ +T
′′
, a tricky expression is obtained:

h̃s =
1

ρ̄
(ρ̄+ ρ′)

∫ T̃+T ′′

T0

∑
k

cp,k

(
T̃ + T ′′

)(
Ỹk + Y

′′
k

)
dT . (2.66)

A convenient simplification is to simply neglect all fluctations and consider the fol-

lowing approximation:

h̃s ≈
∫ T̃

T0

∑
k

cp,k(T̃ ) Ỹk dT . (2.67)

2.1.4.6 Standard k-epsilon Turbulence Model

According to the simplification of unity Schmidt and Prandtl numbers made in Equa-

tion (2.61), the turbulence modeling is complete once k and µt are specified. The standard

k-epsilon model provides one algebraic equation for µt and two differential equations for
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Cµ Cε1 Cε2 Cε3 σk σε
0.09 1.44 1.92 −0.33 1 1.3

TABLE 2.1: k-epsilon model constants.

k and ε, the dissipation rate of k.

µt = ρ̄Cµ
k2

ε
, (2.68)

∂ρ̄k

∂t
+∇ ·

(
ρ̄Ũk

)
=

1

Re
∇ ·
[(
µ+

µt
σk

)
∇k
]
− 2

3
ρ̄k
(
∇ · Ũ

)
+ Pk − ρ̄ε , (2.69)

∂ρ̄ε

∂t
+∇ ·

(
ρ̄Ũε

)
=

1

Re
∇ ·
[(
µ+

µt
σε

)
∇ε
]
−
(

2

3
Cε1 + Cε3

)
ρ̄ε
(
∇ · Ũ

)
+Cε1

ε

k
Pk − Cε2ρ̄

ε2

k
,

(2.70)

where Pk = −ρ̄Ũ′′U′′ : ∇Ũ. The approximation for the term −ρ̄Ũ′′U′′ was already

defined in (2.48) and is repeated here for convenience:

−ρ̄Ũ′′U′′ = 2µt
Re

[
S̃ − I

3

(
∇ · Ũ

)]
− 2

3
ρ̄kI . (2.48)

The model has six parameters whose values are shown in Table 2.1.

It must be pointed out that the droplet dispersion due to turbulence will be modeled

in the dispersed phase description. However, no sink of turbulent kinetic energy was

defined here due to the work done by the eddies on the droplets.
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2.1.5 Boundary Conditions

Four distinct boundary regions are present in the experiment of Chen, St̊arner and

Masri: nozzle inlet (∂Ωnozzle), co-flow inlet (∂Ωco-flow), far-field boundaries (∂Ω∞) and

outlet (∂Ωoutlet), see Figure 2.1.

Nozzle inlet conditions:

∂p

∂n
(∂Ωnozzle, t) = 0 (2.71a)

U(∂Ωnozzle, t) = Unozzle (x) (2.71b)

T (∂Ωnozzle, t) = Tnozzle (2.71c)

Yk(∂Ωnozzle, t) = Yk,nozzle (2.71d)

Coflow conditions:

∂p

∂n
(∂Ωco-flow, t) = 0 (2.72a)

U(∂Ωco-flow, t) = Uco-flow (2.72b)

T (∂Ωco-flow, t) = Tco-flow (2.72c)

Yk(∂Ωco-flow, t) = Yk,co-flow (2.72d)
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Far-field boundaries:

p (Ωb, t) = 1 (2.73a)

∂U

∂n
(∂Ωb, t) = 0 (2.73b)

∂T

∂n
(∂Ωb, t) = 0 (2.73c)

∂Yk
∂n

(∂Ωb, t) = 0 (2.73d)

Outlet conditions:

∂p

∂n
(∂Ωoutlet, t) = 0 (2.74a)

∂U

∂n
(∂Ωoutlet, t) = 0 (2.74b)

∂T

∂n
(∂Ωoutlet, t) = 0 (2.74c)

∂Yk
∂n

(∂Ωoutlet, t) = 0 (2.74d)

where n is the unit vector normal to the boundary.

Function Unozzle(x) and scalars Tnozzle, Yk,nozzle, Uco-flow, Tco-flow and Yk,co-flow are de-

termined in Chapter 3 from available experimental data.

Numerical solution of the equations will be performed time accurately due to the

stochastic modeling of liquid atomization, as explained later in the dispersed phase section

of this chapter. The initial conditions would then be the steady state solution of a pure

gas jet.
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FIGURE 2.1: Definition of axis orientation and domain boundaries for the emerging round
jet flow. Adapted from (LUPPES, 2000).

The time-dependence of thermodynamic pressure p0 is neglected and it is assumed

constantly equal to ambient pressure, or an unity value in dimensionless form,

p0(t) = 1 . (2.75)

2.1.5.1 Boundary Conditions of Turbulent Quantities

Introduction of two new variables in the turbulence model, namely k and ε, requires

the definition of their boundary conditions.

Nozzle inlet conditions:

k(∂Ωnozzle, t) = knozzle(x) , (2.76a)

ε(∂Ωnozzle, t) = εnozzle(x) , (2.76b)
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Co-flow conditions:

k(∂Ωco-flow, t) = kco-flow , (2.77a)

ε(∂Ωco-flow, t) = εco-flow , (2.77b)

Far-field boundaries:

∂k

∂n
(∂Ωb, t) = 0 , (2.78a)

∂ε

∂n
(∂Ωb, t) = 0 , (2.78b)

Outlet conditions:

∂k

∂n
(∂Ωoutlet, t) = 0 , (2.79a)

∂ε

∂n
(∂Ωoutlet, t) = 0 . (2.79b)

Functions knozzle(x) and εnozzle(x) and scalars kco-flow and εco-flow are also determined

in Chapter 3.

2.2 Dispersed (Liquid) Phase

The modeling presented for the liquid phase here is solely intended to deal with

the situation of a narrow liquid jet emerging from a nozzle in a coaxial gaseous flow in

specific conditions that cause the liquid jet to atomize, that is, to disintegrate into a large

number of non-contiguous small volumes called droplets. Despite that, this situation is

further simplified to produce results for engineering problems and many of the physical
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complexities are not addressed.

The ensemble of droplets originated from atomization is called the spray. The spray

evolution in time is a complex phenomenon as the liquid droplets exchange heat, mass

and momentum with the surrounding gas and other droplets. The droplets also have their

inner thermodynamics and might become unstable to the point where they subdivide into

smaller ones.

Here, the droplets will be treated as particles with the following properties:

• liquid substance: according to which the constitutive properties will be defined (only

single-component liquids are concerned, see (BAUMGARTEN, 2006));

• geometric properties: all droplets are assumed to be spheric with diameter D;

• thermodynamic properties: pressure, volume, mass, temperature;

• kinematic properties: position and velocity (translational only).

This description is often called the point-particle method, see (BALACHANDAR;

EATON, 2010).

The next subsections will describe the processes being modeled for computation of

spray evolution (the evolution of all droplet properties in time).

The approach to the inter-phase interaction shown below is usually called the two-way

coupling because it comprises the interaction between gas and droplet but neglects the

interactions between two different droplets, like droplet collisions. It is mostly used for

the case of dilute sprays, when the liquid volumetric fraction (φv,l) satisfies φv,l < 10−3.
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2.2.1 Atomization or Primary Break-Up

The atomization is not modeled in a deterministic way, with the dynamics of liquid

jet disintegration into droplets.

Rather, it is used a stochastic approach called the Monte Carlo’s method, see (BAUM-

GARTEN, 2006), that describes resulting droplets from atomization process based on

available measurements near the nozzle exit plane.

Droplets are inserted into the domain in groups called parcels. A parcel is a group

of droplets with all properties being exactly the same. This means that one single set

of ordinary differential equations is solved for the entire group (and not one set for each

droplet) the only difference being that the parcel mass (mparcel) is the sum of all droplet

mass (md). This means that,

mparcel = Ndmd = Nd

(
ρd
πD3

6

)
, (2.80)

where md is the droplet mass, Nd is the number of droplets represented by this parcel and

D is the parcel (and the droplet) diameter.

For each time instant, a certain number of parcels is inserted into the domain to

represent the liquid injection. The parcel properties in the nozzle exit are specified as

either constant values or random variables sampled from statistical distributions built

from experimental data.

In this work, all parcel properties in the nozzle have constant values except for the

parcel diameter, which is a random variable.
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2.2.2 Secondary Break-Up

The secondary break-up of droplets is neglected. It is considered that droplets vaporize

(and either disappear or have their diameter reduced) before they become unstable.

2.2.3 Momentum Transfer

The motion and momentum equations for a particle are:

dxd
dt

= Ud, md
dUd

dt
= F . (2.81)

The resulting force (F) on the particle proposed by (SOMMERFELD, 2000) is here

simplified for the case of a rigid spheric droplet under small pressure gradient and in low

droplet Reynolds number. The buoyancy force is neglected because the gas density is

much lower than the liquid density (ρ � ρd). The effect of mass transfer on the droplet

momentum equation was also neglected so that

d (mdUd)

dt
≈ md

dUd

dt
. (2.82)

The droplet slip velocity (the droplet velocity relative to the gas) is given by:

Uslip = Ud −
(
Ũ + U′′

)
︸ ︷︷ ︸

gas

, (2.83)

where Ũ is the Favre-averaged gas velocity computed in Equation (2.51) and U′′ is its

fluctuation. Since U′′ is unknown, it is modeled as explained later in the droplet dispersion
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subsection.

F = −ρπD
2

8
CD|Uslip|Uslip +mdg . (2.84)

where the drag coefficient and the droplet Reynolds number read:

CD =


24
Red

(
1 + 1

6
Re

2/3
d

)
Red < 1000,

0.424 Red ≥ 1000.

(2.85)

Red =
ρ|Uslip|D

µ
. (2.86)

Rearranging (2.81) and (2.84),

dUd

dt
= −Uslip

τu
+ g . (2.87)

τu is the momentum relaxation time,

τu =
8md

πρCDD2|Uslip|
=

4

3

ρdD

ρCD|Uslip|
. (2.88)

2.2.4 Heat and Mass Transfer

In the case of an evaporating spray with the droplet temperature below the air tem-

perature, energy is transfered from the gas to the droplets (heat transfer) and liquid mass

is evaporating if the gas is not saturated with vapor (mass transfer). The liquid temper-

ature will either increase or decrease depending on the rate at which each process takes
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place.

The droplet heating and vaporization is given a simplified treatment presented in

(SIRIGNANO; EDWARDS, 2000) as infinity-liquid-conductivity model, it considers spheric

symmetry for the droplet and the surrounding gas with a time varying but spatially uni-

form temperature of liquid phase.

The droplet energy equation is written as

md
dhd
dt

=
dmd

dt
Lv (Td) +Qd , (2.89)

where Lv (Td) is the latent heat of evaporation at temperature Td.

The modeling of heat (Qd) and mass (dmd/dt) tranfers will be divided in two subsec-

tions. The heat transfer is discussed first and the mass transfer comes next.

2.2.4.1 Gas-Droplet Heat Transfer

The gas-droplet heat transfer model is developed from two basic assumptions:

• Thermal diffusivity is larger in gas than in liquid: this means that changes in tem-

perature of liquid surface instantaneously affect the surrounding gas phase, what is

generally true for liquids far from critical conditions. Mathematically, this means

that temperature derivatives with respect to time are neglected in the gas phase.

• The time required for heat diffusion from droplet surface to its interior is much

smaller than the droplet lifetime (the time required for complete evaporation).

Consider the heat flux scheme proposed in (WAKIL; UYEHARA; MYERS, 1954) and

outlined in Figure 2.2: heat is transfered from air to a film composed of air and vapor
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and then to the droplet.

The droplet has a temperature Td and is surrounded by the air-vapor film whose

temperature Tf varies radially until it reaches the air temperature T at radius r = D/2+δf .

The following heat fluxes occur:

• Total heat transfered from the air to the film and the droplet: Q;

• Heat that actually arrives at droplet surface: Qd;

• Sensible heat that increases liquid temperature: QL;

• Latent heat of evaporation: Lv;

• Heat transferred from air to film: QS.

And they are related by the following equation:

Qd = QL + Lv = Q−QS . (2.90)

The enthalpy equation for the air-vapor film surrounding the droplet in spherical

coordinates is:

d

dr

[
4πr2hc

dTf
dr
− ṁdcp,f (Tf − Td)

]
= 0 , (2.91)

where r is the distance from the droplet center, hc is the coefficient of convective heat

transfer through the film, ṁd is the rate at which vapor mass evaporates and diffuses out

and cp,f is the specific heat in the film. They are all assumed to be constant throughout

the film.



CHAPTER 2. GOVERNING EQUATIONS 56

Applying the boundary condition at the droplet surface, Equation (2.91) becomes:

Qd = 4πr2hc
dTf
dr
− ṁdcp,f (Tf − Td) (2.92)

Assuming that the film thickness is small so that:

4πr2 ≈ πD2 for r ∈ [D/2, D/2 + δf ] , (2.93)

and integrating Equation (2.92):

∫ D/2+δf

D/2

dr =

∫ T

Td

πD2hc
Qd + ṁdcp,f (Tf − Td)

dTf , (2.94)

the result is the rate of heat transfer from the air to the droplet:

Qd = πD2hc (T − Td)
z

ez − 1
, (2.95)

where

z = −cp,fṁdδf
πD2hc

.

The expression for modeling the heat transfer coefficient - hc - is the one used by

(NORDIN, 2001),

πD2hc
δf

= πDκfNuf . (2.96)

Equation (2.95) is thus:

Qd = πDκNu (T − Td)
z

ez − 1
. (2.97)
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The Nusselt number - Nu - is given by the correlation bellow and the Prandtl number

- Pr - is computed directly from its definition:

Nu = 2.0 + 0.6Re1/2Pr1/3 , P r =
µfcp,f
κf

. (2.98)

All gas properties (cp,f , µf and κf ) in the above equation should be computed using

the characteristic film temperature (T ∗f ) defined by the the so called one-third rule:

T ∗f =
2Td + T

3
. (2.99)

The equation for droplet energy (2.89) may also be written in terms of temperature

and characteristic time scales for heating - τh - and evaporation - τe:

dTd
dt

=
T − Td
τh

f − 1

cp,d

Lv (Td)

τe
, (2.100)

where

τh =
mdcl,d
πDκNu

, f =
z

ez − 1
. (2.101)

An expression for τe is given by Equation (2.113), derived in the next subsection.

2.2.4.2 Mass Transfer

The exposition below follows the already commented simplifications and is commonly

denoted as D2-law, see (SIRIGNANO; EDWARDS, 2000). Only mass transfer from the

droplet to the gas is considered, thus condensation is not allowed.

The steady-state continuity equation for the surrounding gas around the droplet in
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FIGURE 2.2: Scheme of heat flux from air to droplet, adapted from (WAKIL; UYEHARA;
MYERS, 1954).



CHAPTER 2. GOVERNING EQUATIONS 59

spherical coordinates is:

d

dr

(
ρur2

)
= 0 → ρur2 = cte , (2.102)

where r is the radial coordinate and u is the radial velocity.

Using the boundary condition at droplet surface,

ṁd = ρu
(
4πr2

)
. (2.103)

The steady-state species equation is:

d

dr

[
4πr2

(
ρuYv − ρDv

dYv
dr

)]
= 0 , (2.104)

where Yv is the vapor mass fraction andDv is the vapor diffusion coefficient. The boundary

condition at droplet surface is:

{
4πr2

[
ρuYv − ρDv

dYv
dr

]}
r=D/2

= ṁd . (2.105)

The integral of (2.104) using (2.102) and (2.105) may be written as:

−
∫ ∞
D/2

ṁd

4πρDv
dr

r2
=

∫ Yv,∞

Yv,s

dYv
1− Yv

, (2.106)

where Yv is the vapor concentration in the air-vapor film. Performing the integration, it

becomes:

dmd

dt
= −2πDDvρvln

(
1− Yv,∞
1− Yv,s

)
. (2.107)
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The vapor mass fraction near the droplet surface (Yv,s) is obtained assuming liquid-

vapor equilibrium. In this situation, the vapor partial pressure (pv) is given by Clausius-

Clapeyron equation:

ln

(
pv
p∞

)
= −LvWv

R

(
1

Td
− 1

Tb

)
, (2.108)

where Tb is the liquid boiling temperature at pressure p∞ and Lv is the heat of vaporization

per unit mass.

Using Raoult’s law and the ideal gas state equation, the vapor mass concetration near

droplet surface (Yv,s) is:

Yv,s =
pv (Td)

p

Wv

W
. (2.109)

The extra mass transfer due to gas motion around the droplet is accounted by the

Sherwood number given by the empirical correlation of (RANZ; MARSHALL, 1952):

dmd

dt
= −2πDDvρvln

(
1− Yv,∞
1− Yv,s

)
Sh , (2.110)

where

Sh = 2.0 + 0.6Re1/2Sc1/3 . (2.111)

As for the Nusselt number, all properties here are computed with the characteristic film

temperature (T ∗f ) previously defined.

The droplet evaporation rate (dmd/dt) may then be written as:

dmd

dt
= −md

τe
, (2.112)
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where

τe =
md

πDDShρvln
(

1−Yv,∞
1−Yv,s

) (2.113)

is the characteristic time scale of droplet evaporation.

2.2.5 Droplets at Domain Boundaries

When the droplet crosses the domain boundary, it is simply removed from the com-

putation.

2.2.6 Droplet Dispersion

Although the gas phase velocity has been averaged in (2.51), the droplet experiences

oscillations in its slip velocity if turbulence is present. This oscillation not only affects the

droplet drag, the extra shear on droplet surface might cause deformation and instabilities

leading to droplet break-up. Furthermore, due to changes in the surrounding gas flow,

mass and heat transfers are also affected.

Here, the effects of turbulence on droplet motion are simply accounted for by summing

a fluctuation (U′′) to the gas averaged velocity (Ũ):

Uslip = Ud −
(
Ũ + U′′

)
. (2.83)

For the k-epsilon model, a characteristic magnitude for velocity fluctuation may be

defined as the scalar

< U ′′ >=

√
2

3
k . (2.114)
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The magnitude of the velocity fluctuation (U′′) is then sampled from a Gaussian

distribution with a variance equal to < U ′′ > and zero mean. Finally, the direction of U′′

is randomly chosen.

The sampling is performed once the time passed from the last sampling is greater than

the characteristic time τturb: the minimum between the eddy lifetime and the time taken

to the droplet to cross it, given by the ratio of a turbulent length scale (lt = C
3/4
µ k3/2/ε)

and the magnitude of the droplet slip velocity:

τturb = min

[
k

ε
,
k3/2

ε

C
3/4
µ

|Uslip|

]
. (2.115)

Further details are discussed in (AMSDEN; O’ROUKE; BUTLER, 1989) and (BAUM-

GARTEN, 2006).



3 The Experiment of Chen, St̊arner

and Masri

Chen, St̊arner and Masri performed at Sydney University a detailed experimental in-

vestigation of a turbulent evaporating jet of acetone, see (CHEN; STÅRNER; MASRI,

2006). Droplet diameter, droplet velocity, droplet number density and liquid volumet-

ric flux were measured using a two-component phase Doppler interferometry (PDI) and

acetone vapor mass flux was measured using planar laser-induced fluorescence (PLIF).

The experiment consists of a spray nozzle centered on the exit plane of a wind tunnel

with 150mm by 150mm that supplies a co-flowing air stream, see Figure 3.1. Inside the

nozzle, a pressurized liquid jet is surrounded by a carrier air flow until the nozzle exit.

The co-flow has a low turbulence intensity of less than 2%, so that the effect on the

spray jet turbulence is negligible. The main benefit of this setup is the avoidance of flow

recirculation near the nozzle exit, what would be an extra complication for the boundary

conditions of a numerical simulation.

Acetone evaporation takes place even before the nozzle exit, cooling both the gas and

the droplets. The exit temperature shown in Table 3.1 was not measured, but computed

from energy conservation based on the measurement of acetone vapor mass flux and the
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Experiment Data
Liquid Phase Acetone
Liquid Flow rate at nozzle exit (g/min) 7.0
Carrier air flow rate (g/min) 135
Vapor flux at nozzle exit (g/min) 5.0
SMD at nozzle exit (µm) 13.7
Gas temperature at nozzle exit (K) 280
Gas jet Reynolds Number (Re = 4ṁg/πDnozzleµg) 16, 300

TABLE 3.1: Basic information about the experiment of Chen, St̊arner and Masri, (CHEN;
STÅRNER; MASRI, 2006).

assumption of thermal equilibrium.

Notation. Sauter mean diameter - SMD or D32 - is an average droplet diameter given

by:

SMD =

∑
dropletsD

3∑
dropletsD

2
. (3.1)

FIGURE 3.1: Configuration of the spray jet nozzle from (CHEN; STÅRNER; MASRI,
2006).
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3.1 Determining the Boundary Conditions for the

Numerical Simulation

In this section, the boundary conditions for the numerical simulation are obtained

from the evailable experimental data. The measurements provide almost complete data

for establishing the boundary conditions and few assumptions had to be made. The list

of conditions to be specified for each phase is summarized below.

3.1.1 Nozzle

Below, the boundary conditions at nozzle exit.

3.1.1.1 Liquid Phase:

Diameter (D): The parcel diameter is sampled from a statical distribution built from

measurements. (CHEN; STÅRNER; MASRI, 2006) does not provide such measure-

ments at the nozzle exit plane, but only the Sauter mean diameter. A Lognormal

distribution was then specified with µ = 10 µm and σ = 5.5 µm.

cpf(d;µ, σ) =
1

2
erfc

[
− lnD − µ

σ
√

2

]
= Φ

(
lnD − µ

σ

)
, (3.2)

pdf(D;µ, σ) =
1

Dσ
√

2π
e−

(lnD−µ)2

2σ2 . (3.3)

Figure 3.2 shows the distribution shape. The corresponding Sauter mean diameter

is SMD = 14 µm.
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FIGURE 3.2: Lognormal probability density function used for sampling droplet diameter
at nozzle exit.

Position (xd): The droplets are inserted in the domain with an aleatory radial coor-

dinate in the interval going from the nozzle axis to the nozzle external radius

(y ∈ [0, 4.9] mm), which is sampled for each parcel injection.

Velocity (Ud): The droplet injection velocity was made dependent only on the injection

position according to Figure 3.3.

FIGURE 3.3: Droplet injection velocity as a function of its injection position.

Temperature (Td): The temperature was determined by assuming thermal equilibrium
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in the nozzle exit for given mass flow rates of liquid, air and acetone vapor:

Tnozzle = T∞ −
ṁacLv

ṁgcp,g + ṁlcp,l
= 280 K (3.4)

where T∞ is the ambient temperature and Lv is the latent heat of vaporization of

acetone.

The fixed value of 280 K is specified for droplet and gas temperature.

Mass flow rate (ṁd): According to the measurements, the liquid mass flow rate is ṁd =

2 g/min. The parcel injection rate was 5 × 105 parcels/s, yelding about 35,000

parcels in the computational domain.

3.1.1.2 Gas Phase:

Velocity (Ũnozzle(x)), Turbulent KE (knozzle(x)) and Dissipation Rate (εnozzle(x)):

The droplet velocity was obtained from a gas phase only numerical simulation of the

nozzle interior with fixed mass flow rate of ṁg = 140g/min. The turbulence proper-

ties in the nozzle inlet was estimated using the following relations from (LUPPES,

2000):

k =
3

2
i2Ū2

nozzle , ε =
c

3/4
µ k3/2

lm
, (3.5)

where Ūnozzle is the average velocity inside the nozzle, i = 0.03 and lm = 0.07Dnozzle.

The resulting velocity profile was then compared to the mean velocity of the smallest

droplets showing good agreement in Figure 3.4.

Temperature (T̃nozzle): As explained in the liquid phase section, the fixed value of 280 K

was used.
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Species Concentration (Ỹk,nozzle): Given the measured mass flow rates of air (ṁair)

and acetone vapor (ṁac):

Yac =
ṁac

ṁac + ṁair

= 0.0357 ,

YO2 = 0.233 (1− Yac) = 0.224 ,

YN2 = 1− Yac − YO2 = 0.740 .

(3.6)

Dynamic Pressure (pd,nozzle): A zero gradient condition was used.

(a) (b)

(c)

FIGURE 3.4: Radial profiles of the boundary conditions for the gas phase at the nozzle
exit plane: mean axial velocity (a), turbulent kinetic energy (b) and its dissipation rate
(c).
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3.1.2 Coflow

In the co-flow boundary, only the gas phase is present.

Velocity (Ũco−flow), Turbulent KE (kco−flow) and Dissipation Rate (εco−flow): A fixed

value for velocity was used with the same relations for turbulence properties from

(LUPPES, 2000):

Ũco−flow = 3 m/s ,

k =
3

2
i2Ū2

nozzle = 0.0054 J/kg ,

ε =
c

3/4
µ k3/2

lm
= 0.0124 J/kg/s ,

(3.7)

where Ūnozzle is the average velocity in the co-flow region, i = 0.02 and lm =

0.07Dco−flow.

Temperature (T̃co−flow): The fixed value of 298 K was used, the ambient temperature.

Species Concentration (Ỹk,co−flow): Given the measured mass flow rates of air (ṁair)

and acetone vapor (ṁac):

Yac = 0 , YO2 = 0.233, YN2 = 0.767 . (3.8)

Dynamic Pressure (pd,co−flow): A zero gradient condition was used.

3.1.3 Far-field

Ambient pressure (p∞ = 1× 105 Pa) is set for dynamic pressure. Zero gradient is set

for the remaining quantities.
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3.2 Species Equations

It is only considered the presence of two species: acetone vapor and air. Equation

(2.41) for the mean mass concentration of acetone vapor (Ỹac) is then

∂ρ̄Ỹac
∂t

+∇ ·
(
ρ̄ŨỸac

)
= ∇ ·

[
ρ̄ (ν + νT )∇Ỹac

]
+ S̄Y ac , (3.9)

The acetone vapor is the scarce species relative to air,

Ỹair = ỸO2 + ỸN2 = 1− Ỹac . (3.10)



4 Numerical Solution and

Computational Details

4.1 Numerical Solution of Equations

4.1.1 OpenFOAM Code

The numerical solution of the equations presented in Chapter 2 was obtained using

the OpenFOAM code. Details of OpenFOAM formulation are explained in (JASAK,

1996) and (WELLER et al., 1998). From all the set of available solvers and libraries in

OpenFOAM, the dieselFOAM solver and dieselSpray class (as implemented in OpenCFD

release 1.7.1) were the major pieces of code used in this work. To my knowledge, both

were written by Niklas Nordin, (NORDIN, 2001).

The dieselSpray class handles the modeling of lagrangian particles and their sub-

models. Minor modifications were made in order to have more flexibility in boundary

conditions and to adapt them to the experimental conditions.

The dieselFOAM solver couples the modeling of the lagrangian particles and the gas

flow solution. The spray sources are explicitly treated and the coupling among variables



CHAPTER 4. NUMERICAL SOLUTION AND COMPUTATIONAL DETAILS 72

is solved with PISO algorithm, see (JASAK, 1996) and (FERZIGER; PERIĆ, 1999).

Minor modifications were added to the solution of low Mach number equations in-

stead of the fully compressible formulation. They are briefly explained here, but the

understanding requires from the reader some familiarity with OpenFOAM programming.

The thermodynamic pressure retained its original name p and is the pressure used in

the state equation:

<createFields.H>

volScalarField& p = thermo.p();

and in the lagrangian models:

<createSpray.H>

spray dieselSpray

(

U,

rho,

p,

T,

composition,

gasProperties,

thermo,

g

);

A new scalar field was assigned to the dynamic pressure, volumeScalarField pd:
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<createFields.H>

volScalarField pd

(

IOobject

(

"pd",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

The momentum equation was modified to be computed using the gradient of pd instead

of p in the momentum predictor:

<UEqn.H>

fvVectorMatrix UEqn

(

fvm::ddt(rho, U)

+ fvm::div(phi, U)

+ turbulence->divDevRhoReff(U)

==

rho*g

+ dieselSpray.momentumSource()
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);

if (momentumPredictor)

{

solve(UEqn == -fvc::grad(pd));

}

Finally, the the pressure equation is now a Poisson equation for the dynamic pressure

and it uses the thermodynamic pressure for computing the density.

<pEqn.H>

fvScalarMatrix pdEqn

(

fvc::ddt(psi,p)

+ fvc::div(phi)

- fvm::laplacian(rho*rUA, pd)

==

Sevap

);

where psi or Ψ is the isothermal compressibility. For an ideal gas:

ρ = pΨ =
p

RWT
. (4.1)

In this work, the time-dependence of the thermodynamic pressure is neglected and
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the term fvc::ddt(psi,p) vanishes.

4.2 Aspects of the Numerical Solution

The calculations deviate from experiments due to three groups of errors as stated in

(JASAK, 1996) and briefly explained here:

Modeling Errors: the difference of the real flow and the exact solution of the mathe-

matical model.

Discretization Errors: the difference between the exact solution of the mathematical

model and the exact solution of the discretized equations on the discretized domain

(the numerical grid).

Iteration Convergence Errors: the difference between the approximate and the exact

solution of the discretized equations in the discretized domain. The approximate

solution is obtained by iterative methods that reduce the convergence error up to a

certain level known as the solver tolerance.

The modeling errors were already discussed as the governing equations were presented

in Chapter 2. The discretization of equations is treated in next section. The criterion for

iteration convergence was set to 10−7 for the pressure equation and 10−6 for the remaining

variables. The residual of equations were monitored during execution to ensure the validity

of the solution.

The equations were solved in segregated linear systems using conjugate gradient algo-

rithms. The solution did not present convergence difficulties as the convergence tolerances

were satisfied in few iterations.
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4.2.1 Discretization of the Governing Equations

The general transport equation for a scalar intensive property φ is:

∂ρφ

∂t︸︷︷︸
temporal derivative

+∇ · (ρUφ)︸ ︷︷ ︸
advection

−∇ · (ρΓ∇φ)︸ ︷︷ ︸
diffusion

= S (φ)︸ ︷︷ ︸
source

(4.2)

Each term was discretized using the following schemes:

• Temporal derivative: Euler implicit method;

• Advection term: Gauss theorem is applied to transform the divergence in surface

integrals and the upwind scheme is used to interpolate cell centered values to cell

faces;

• Diffusion term: Gauss theorem with linear interpolation from cell center to faces.

Central difference is used for the gradient;

• Sources: all sprays sources are explicitly handled. The spray is evolved from time

step ”n” to ”n+1” using the gas phase properties at time step ”n”, and all source

terms are computed. The gas is then evolved to time step ”n+1”.

4.2.2 Domain Discretization (The Numerical Grid)

Two axisymmetric (2D) orthogonal mesh grids were built: a fine and a coarse grid.

OpenFOAM uses the collocated grid arrangement. The fine grid was composed of 14, 800

cells (74 cells in the radial direction and 200 in the axial direction) and the coarse grid

was composed of 5, 460 cells (42 in the radial direction and 130 in the axial direction).

The geometries are shown in Figure 4.1.
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FIGURE 4.1: Planar view of the fine (a) and the coarse grid (b).
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Solutions for both grids were obtained for a gas phase only flow using the same bound-

ary conditions described in Chapter 3, hence the same Reynolds number, and the same

discretization schemes for the equations and the same convergence tolerances previously

mentioned.

Figure 4.2 shows on the left the comparison of radial profiles of mean axial velocity

(Ũx) for the axial coordinates: x/D = 5, x/D = 15 and x/D = 25. In the same Figure,

but on the right, it is shown radial profiles of the turbulent kinetic energy (k) for the same

axial coordinates. In despite of some differences, the coarse grid solution was considered

enough accurate and it was used for the results presented in Chapter 5.

It is not clear how mesh refinements will necessarily improve computations for the

lagrangian description of droplets. This happens because it is made the assumption that

the liquid volume fraction in the computational cell is negligible. If the mesh is refined

further and further, this might become untrue. For the present work, the liquid volumetric

fraction in the cells near the nozzle is about 10−3 for the fine mesh and about 10−5 for

the coarse mesh.

Another problem with mesh refinement using the lagrangian-eulerian approach is the

differences obtained in interpolating gas properties to parcel positions from one grid to

another. This problem has been discussed in (NORDIN, 2001) and (BAUMGARTEN,

2006).

So far, the recommendation for the mesh dependency is to refine the cells until certain

accuracy for the continuous phase is satisfied and not until the eventual limitation of

computational cost, what could violate the assumption of a low liquid volume fraction.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.2: Comparison of radial profiles obtained for the fine and the coarse meshes
for a pure gaseous jet. Mean axial velocity (Ũx) on the left for axial coordinates: x/D = 5
in (a), x/D = 15 in (c) and x/D = 25 in (e); and turbulent kinetic energy (k) on the
right: x/D = 5 in (b), x/D = 15 in (d) and x/D = 25 in (f).



5 Results and Discussions

In this chapter, it is presented results and discussions on numerical simulation of the

experiment of (CHEN; STÅRNER; MASRI, 2006) using the methodology introduced in

the preceding chapters. The first section shows results of spread rate and self-similar

profiles of the gas phase turbulent jet. The second section shows results of droplet and

gas velocities and droplet dispersion. The third section presents liquid mass flow rates,

vapor mass fluxes and droplet Sauter mean diameter.

5.1 Turbulent Round jet

Consider the following definitions for the turbulent round jet:

Jet half-radius (y1/2(x)): the radial coordinate for which the mean axial velocity is half

of the mean axial velocity at the centerline for some axial coordinate x:

Ũx(y = y1/2) =
1

2
Ũx(y = 0) . (5.1)

Dimensionless radial coordinate (ŷ(x, y)):

ŷ =
y

y1/2

. (5.2)
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Dimensionless Mean Axial Velocity (Û):

Û =
Ũx − Ũco-flow

Ũx(y = 0)− Ũco-flow

, (5.3)

where Ũco-flow is the mean axial velocity of the co-flow stream specified in the bound-

ary condition.

Dimensionless Turbulent Kinetic Energy k̂:

k̂ =
k

(Ũx(y = 0)− Ũco-flow)2
. (5.4)

Dimensionless Turbulent Viscosity (ν̂T ):

ν̂T =
µ

ρ̄Ũx(y = 0)y1/2

. (5.5)

Jet Spread Rate (S):

S =
dy1/2(x)

dx
. (5.6)

An empirical observation of a gas turbulent round jet is that the profiles of Û , k̂ and

ν̂T as function of ŷ becomes self-similar (i.e. independent of the axial coordinate) from

some distance to the nozzle exit. Furthermore, there is a linear relation between the

half-radius (y1/2) and the axial coordinate, that is, the jet sprad rate is constant.

(CHEN; STÅRNER; MASRI, 2006) has experimentally shown that self-similarity also

occurred for Û in the presence of the spray jet for x/D ≥ 10. For arriving at this

conclusion, it assumed the velocity measured for the smaller droplets (D < 3µm) as being

the gas velocity.
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The group of Figures 5.1 shows the same investigation for the gas velocity field ob-

tained in the numerical simulation. The Figure 5.1a shows the profiles of Û for several axial

coordinates. Differently than the experiment, the self-similarity only occurs for x/D ≥ 15

(and not for x/D ≥ 10). This suggests that the transition from the jet developing region

to the turbulent region is retarded in the simulation.

Notation. < f ′′ > or < f ′ > denotes the root mean square of the fluctuation f ′′ (for a

Favre average) or f ′ (for a time average).

Figures 5.1b and 5.1c show that the evolution to self-similar profiles is slower for the

turbulent quantities k̂ and ν̂T and one may not say that the self-similarity was achieved

inside the domain. (CHEN; STÅRNER; MASRI, 2006) has shown that for x/D ≤ 25 it

was also not achieved in the experiment for the root mean square of the axial velocity

fluctuation (< U ′′x >).

One observation concerning the turbulent viscosity (ν̂T ) is that the centerline value

seems to evolve to a value of ν̂T = 0.047, higher than values found in the literature for the

turbulent round jet. (POPE, 2000) reports a self-similar turbulent viscosity at centerline

of ν̂T = 0.029.

The jet spread rate measures the spread of the axial velocity in the radial direction. A

value about S = 0.095 is found on the literature for the pure gas flow (POPE, 2000), and

it is independent of Reynolds number. For the spray jet, however, (CHEN; STÅRNER;

MASRI, 2006) has reported S = 0.066. In the simulation, it was found a higher value of

S = 0.071, a difference of 23%.

The Figure 5.2a shows the indeed different half-radius values found in the simulation

and the experiment for the same axial coordinates, and Figure 5.2b compares the self-
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similar profiles of Ûx from the simulation and the experiment.

The overestimation of the round jet spread rate with the default coefficients of k-

epsilon turbulence model has been reported previously by different authors. (LUPPES,

2000) has discussed four alternatives to the correction. The modifications consist not only

in changing the model coefficients, but also tunning of boundary conditions.

No correction was used in this work because the exact modifications are not known in

advance. The effect of this discrepancy on the droplet velocities is discussed in the next

section.
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(a)

(b)

(c)

FIGURE 5.1: Numerical results showing the evolution to self-similar profiles of the fol-
lowing gas phase properties: (a) dimensionless mean axial velocity - Ûx, (b) dimensionless
turbulent kinetic energy - k̂ - and (c) dimensionless turbulent viscosity - ν̂t. The different
curves show the profiles for the corresponding axial coordinate indicated in the legend.
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(a) (b)

FIGURE 5.2: (a) Half-radius as a function of the axial coordinate in the experiment
and in the simulation. (b) Self-similar radial profile of the numerical and the experimen-
tal dimensionless axial velocity - Ûx. The measurements were obtained from (CHEN;
STÅRNER; MASRI, 2006).
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5.2 Gas and Droplet Velocities and Droplet Disper-

sion

(CHEN; STÅRNER; MASRI, 2006) has presented velocity measurements for droplets

of four diameter classes in the spray jet: D < 5µm, 10µm < D < 20µm, 20µm < D <

30µm and 30µm < D < 40µm. The importance of separating the data in droplet size

classes is that the drag force is dependent on its size.

Figure 5.3 shows the time response to drag force as modeled in Equation (2.87) for

droplets with diameter ranging from 10 to 40µm and initial velocity of 10 m/s. The time

for the droplet with diameter of 40 µm comes to rest is nearly 10 times greater than the

required for the droplet with 10 µm.

This fast response of smaller droplets provides a good estimative of the gas velocity.

(CHEN; STÅRNER; MASRI, 2006) has measured the velocity of droplets with D <

5 µm that here will be assumed to represent also the experimental gas velocity. The

consequences of the larger spread rate mentioned before may then be evaluated directly

in the radial profile of the mean axial velocity.

Figure 5.4 shows in red squares the measured radial profiles of the mean axial velocity

for the gas phase (Ũx) in the axial coordinates of: x/D = 5, 10, 15, 20 and 25. The radial

profile obtained in the simulation is also shown in a solid black line. It is evident that the

underprediction of the gas velocity in the simulation becomes higher in the downstream

direction. In the axial coordinate of x/D = 25, the centerline value in the simulation is

about 20% below the experimental value.

It may be questioned whether the flux of gas momentum in the nozzle exit were cor-
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FIGURE 5.3: Solution of droplet drag model of Equation (2.87). Droplet velocity as a
function of time for an initial velocity of 10 m/s in stagnant air at standard conditions
and for droplet diameters of 10, 20, 30 and 40µm.

rect because the gas exiting temperature was estimated from an assumption of thermal

equilibrium with the liquid phase, as explained in Equation (3.4) in Chapter 3. If temper-

ature were lower than in the experiment, then the density and the momentum flux would

also be lower.

However, that was not the case. Velocity agreement was good, see Figure 3.4a, and

nozzle mass flow rate matches measurements within 1.5%. This led to the conclusion that

the momentum flux was correctly specified in the nozzle exit and that the discrepancies

in velocity were due only to the turbulence modeling.

In fact, (LUPPES, 2000) has reported an error of the same percentual magnitude using

the k-epsilon model with the default coefficients. This result is reproduced in Figure 5.5.

The simulation with default k-epsilon coefficients is represented as the curve simulation 1.

The others curves are results obtained by tunning the model parameters and the boundary

conditions.

(CHEN; STÅRNER; MASRI, 2006) has also reported the root mean square of axial

and radial velocities, respectively < U ′′x > and < U ′′y >. Again, the values for the smaller
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(a) (b)

(c) (d)

(e)

FIGURE 5.4: Measured and computed radial profiles of the mean axial velocity of the
gas phase (Ũx). Each figure shows the profile in a different axial location: x/D = 5 in
(a), x/D = 10 in (b), x/D = 15 in (c), x/D = 20 in (d) and x/D = 25 in (e). The
measurements were obtained from (CHEN; STÅRNER; MASRI, 2006).

droplets (D < 5 µm) are being used to represent the gas velocity. The same quantities

are not provided in the simulation for direct comparison. The turbulence model only

solves for the turbulent kinetic energy and its dissipation rate. A characteristic velocity,

however, may be defined as < U ′′ >=
√

2/3k. This quantity is shown in Figure 5.6 with

< U ′′x > and < U ′′y >. Again, it is shown radial profiles for different axial coordinates.
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FIGURE 5.5: The comparison of four simulations of a turbulent air jet (Re = 37,600) with
measurements. The centerline axial velocity is shown. In each plot the axial distance is
normalized by the nozzle diameter. Simulation 1: standard k-epsilon model. Simulation
2: cµ = 0.06. Simulation 3: cµ = 0.06, cε,2 = 1.87. Simulation 4: cµ = 0.09, cε,2 = 1.87, n
=10. Figure reproduced from (LUPPES, 2000).

Three observations are readily made:

• The radial profile of < U ′′x > is similar to that of < U ′′y >;

• The characteristic velocity defined for the k-epsilon model (< U ′′ >) agrees well

with < U ′′x > and < U ′′y >;

• < U ′′ > declines faster than < U ′′x > and < U ′′y > as the axial coordinate increases.

The first observation indicates that the turbulent jet differs from the self-similar pro-

files found in the literature (POPE, 2000), where < U ′′x > is about twice as big as < U ′′y >

in the centerline. It remains the question whether this occurs because the jet is not fully

developed or because of some spray influence.

The second observation suggests that the k-epsilon model is appropriate to describe

the round jet turbulence, providing an appropriate characteristic velocity. The third

observation, however, indicates that the turbulent dissipation is overpredicted.
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(a) (b)

(c) (d)

(e)

FIGURE 5.6: Measured radial profiles of the gas phase velocities < U ′′x > and < U ′′y >

and the characteristic velocity defined for the k-epsilon model < U ′′ >=
√

2/3k obtained
from the simulation. Each figure shows the profile in a different axial location: x/D = 5
in (a), x/D = 10 in (b), x/D = 15 in (c), x/D = 20 in (d) and x/D = 25 in (e). The
measurements were obtained from (CHEN; STÅRNER; MASRI, 2006).

Returning to the mentioned influence of the discrepancies in the mean axial velocity

of the gas phase on the droplet velocities, the lower velocity of the gas increases the

droplet slip velocity and causes a larger drag to be felt by them. The obvious conclusion

is that the same discrepancy in the gas velocity will be observed in the comparison of
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experimental and numerical values of the droplet velocities.

Figure 5.7 shows in red squares the radial velocity profile measured by (CHEN;

STÅRNER; MASRI, 2006) for droplets in the class of 10µm < D < 20µm in the ax-

ial coordinates of: x/D = 5, 10, 15, 20 and 25. For each radial position, the velocity

value is the ensemble average of the droplets crossing the laser PDI beams. The droplet

velocity obtained in the simulation is also shown as black scattered points representing

each of them a different droplet in the computation, no averaging was performed.

It is observed that the computed droplet velocity also becomes systematically lower

than the measurements in the downstream direction.

The last result concerning the droplet velocity is the droplet dispersion: the differ-

ences in droplet velocities found in different size classes. Figure 5.8 shows the numerical

instantaneous radial velocity (Uy) as function of radial coordinate for two extreme size

classes: D < 10 µm and D > 30 µm. It is seen that the smaller droplets are more sensitive

to the gas velocity sampled in the turbulent dispersion model introduced in Chapter 2,

specially near the nozzle exit. The biggest droplets show a smaller dispersion around the

zero mean value because of their higher inertia. As the axial coordinate increases, both

behaviors become similar.
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(a) (b)

(c) (d)

(e)

FIGURE 5.7: Red squares present measured radial profiles of mean axial velocity of
droplets (Ũd,x) in the size class of 10µm < D < 20µm. Scattered black dots are the
computed velocities for each droplet in the numerical simulation. Each figure shows the
velocity profile in the axial coordinate specified above the plot window. The measurements
were obtained from (CHEN; STÅRNER; MASRI, 2006).
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5.8: Scatter plot of the numerical radial velocity of droplets (Uy) in two different
size classes: D < 10 µm on the left or (a), (c) and (e) labels; and D > 30 µm on the right
or (b), (d) and (f) labels. The dispersion in the radial velocity is higher for the smaller
droplet class and in the vicinity of the nozzle exit.
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5.3 Liquid Mass Flow Rate and Vapor Mass Fluxes

Correct prediction of droplet evaporation is, together with velocity, of high importance

for applications of spray simulation. Reasonably low discrepancies found for droplet ve-

locity in Figure 5.7 already indicates that the evaporation model performed well. This

is due to the fact that an incorrect modeling of evaporation would lead to an erroneous

droplet diameter, further affecting velocity prediction.

Figure 5.9 shows numerical and experimental liquid mass flow rate for different axial

coordinates. Computed values are in good agreement with measurements for x/D ≤ 10.

Further downstream, the simulation overpredicts the liquid flow rate. Clearly, this means

that droplet evaporation is lower than it should be. In fact, in Figure 5.10, it is made

the comparison of experimental and numerical radial profiles of vapor mass fluxes and

the trend is exactly the same: as the axial coordinate increases, less vapor (hence more

liquid) is present in simulation than in experiment.

FIGURE 5.9: Droplet mass flow rate at four axial locations. Measurements were obtained
from (CHEN; STÅRNER; MASRI, 2006).

The underestimation of evaporation rate has also been noticed in a large-eddy simu-

lation performed by (BINI; JONES, 2009), where it was discussed the effect of a subgrid

model to the evaporation. It is said that the lack of a subgrid model affects evapora-
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(a) (b)

(c) (d)

FIGURE 5.10: Radial profiles of mean axial mass flux of acetone vapor: ṁ′′ac = ρȲacŨx.
The measurements were obtained from (CHEN; STÅRNER; MASRI, 2006).

tion mainly in the jet core, where the mean vapor mass fraction might be saturated, but

negative oscillations might allow for extra vaporization. In fact, the evaporation model

presented in Chapter 2 only deals with the averaged flow properties, and the temperature

and mass fraction oscillations, (T ′′) and (Y ′′ac), are not taken into account.

Surely, for a large-eddy simulation, the lack of a subgrid model is less severe than in

RANS modeling since at least the non-filtered oscillations are present.

A stochastic model for RANS simulation was proposed in (DE; LAKSHMISHA; BIL-

GER, 2011). The proposed approach was to establish stochastic behaviors for T ′′ and

Y ′′ac and use the instantaneous values of them (T and Yac) in the heating and evaporation

models. The results, however, did not improve significantly in the case it studied. This ap-

proach implies an odd assumption that the experimental correlations used for the droplet

models, which were developed for a non-oscillating gas field, would work for an oscillat-
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ing situation by only using instantaneous flow properties. A more profound discussion

is found in (SIRIGNANO; EDWARDS, 2000), where directly modeling of the Sherwood

and the Nusselt numbers is suggested. This is the same approach used in (BINI; JONES,

2009) with good results.

It must also be pointed that uncertainties in the gas mean velocity also affect the

droplet heating and evaporation prediction again because of the different slip velocity.

The correct attempt to improve accuracy of the present computation would be to adjust

the turbulence model to firstly correct the gas mean velocity and see the new evaporation

rates. Next, a stochastic subgrid model for the heat and mass transfer coefficients could

be studied.

The last studied property of the spray is the droplet Sauter mean diameter (SMD).

Figure 5.11 shows the numerical and experimental radial profiles of SMD.

The computed Sauter mean diameter shows a good agreement with measurements, in

despite of the uncertainty about the droplet size distribution in the boundary conditions

and the higher liquid flow rates in Figure 5.9. This may also be a consequence of the low

variance in droplet diameter in the nozzle injection.

This agreement also confirms that the velocity discrepancy is caused by the anomalous

jet spread rate. As discussed previously, if diameters were also in disagreement, the

predicted drag force on the droplets would be further incorrect.
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(a)

(b)

(c)

FIGURE 5.11: Numerical and experimental radial profiles of Sauter mean diameter
(SMD). The measurements were obtained from (CHEN; STÅRNER; MASRI, 2006).



6 Conclusions

This work presented a set of equations to model the evolution of a spray jet and

its numerical solution. Computations were compared to available measurements indicat-

ing a good general prediction of flow quantities with some disagreements susceptible to

improvements in the droplet velocity and evaporation rate.

Velocity of both gas and liquid phases were underpredicted due to the high turbulent

viscosity computed by the turbulence model. It is suggested in the literature that the

discrepancies for a round jet may be diminished by changing the model coefficients and

reducing the turbulent length scale in jet inlet boundary conditions.

Evaporation rate was underpredicted after the jet developing region. Turbulence

effects on Nusselt and Sherwood numbers were not modeled and this is believed to decrease

evaporation, specially in the jet core, as reported by (BINI; JONES, 2009).

Further, disagreements in the prediction of gas velocity may also have contributed to

differences in the evaporation rate. The maximum error in liquid mass flow rate at some

axial location was about 20%.

The shape of radial profile of vapor mass fluxes was well predicted. The same can be

said to the SMD radial profiles.

Future work could explore improvements in the round jet turbulence modeling and
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new heating and evaporation models for RANS simulations accounting for fluctuations of

flow properties. Something similar to what was done in (BINI; JONES, 2009) could serve

as a starting point.

The hypothesis of unity Prandtl and Schmidt numbers was also not tested.

Finally, the OpenFOAM source code offers powerful and flexible libraries that may be

adapted to user needs. It consists of a great platform for collaborative code development

in fluid dynamics. It is also an alternative for industry in the development of in-house

solutions.
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Appendix A - Appendix

A.1 Sensible Enthalpy Equation

The aim of this section is to start from the total energy equation for a compressible

flow of a perfect gas mixture and arrive to the sensible enthalpy equation, clarifying the

confusion that might be caused by the different forms of energy (or enthalpy) equations.

For a mixture ofM perfect gases, the total energy is defined as the sum of the chemical,

kinetic, potential and sensible energies:

et =

∫ T

T0

CvdT −RT0/W︸ ︷︷ ︸
sensible

+
M∑
k=1

∆h0
f,kYk︸ ︷︷ ︸

chemical

+
1

2
(U ·U)︸ ︷︷ ︸
kinetic

−
∫
γ

g · ds︸ ︷︷ ︸
potential

=
M∑
k=1

et,kYk ,

(A.1)

where ∆h0
f,k is the mass enthalpy of formation of species k at a reference temperature T0.

γ is a path, with respect to some reference position, in the volumetric force field g.

The sensible energy (es) is solely the parcel sensitive to temperature variations. The

thermal energy (e) comprises both the chemical and sensible energies (the total energy

subtracted of the mechanical energy).

The conservation equation for the total energy, see (POINSOT; VEYNANTE, 2005),
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reads:

∂ρet
∂t

+∇ · (ρUet) = ∇ · J +∇ · (σ ·U) + Φ + ρ
N∑
k=1

Ykgk · (U + Vk) , (A.2)

where gk is the volumetric force on species k, Φ is the heat source term, σ is the stress

tensor σ = τ − pI and

J = κ∇T − ρ
M∑
k=1

hkVkYk . (A.3)

The heat source term is due to external heat added to the system, e.g. an electric

spark or a radiative flux. It must not be confounded with the heat released by combustion

(or a chemical reaction), which is already contained in the system in the form of chemical

energy. The heat released in combustion is obtained by computing the difference in the

enthalpy of formation of reactants and products.

The following manipulations of (A.2) consist in substituting total energy with total

enthalpy, subtracting the mechanical energy and then subtracting the chemical enthalpy.

The resulting equation is that of the sensible enthalpy.

The relation between total energy (et) and total enthalpy (ht) is et = ht − p/ρ. The

total derivative of et in terms of ht then becomes:

∂ρet
∂t

+∇ · (ρUet) =
∂ρht
∂t

+∇ · (ρUht)−
∂p

∂t
−∇ · (pU) . (A.4)
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Substituting in (A.2),

∂ρht
∂t

+∇ · (ρUht) =
∂p

∂t
+∇ · J +∇ · [(σ + pI) ·U] + Φ + ρ

N∑
k=1

Ykgk · (U + Vk)

=
∂p

∂t
+∇ · J +∇ · (τ ·U) + Φ + ρ

N∑
k=1

Ykgk · (U + Vk) .

(A.5)

The conservation equation of kinetic energy, here denoted by Π = 1/2 (U ·U), is

obtained by the scalar product of the momentum equation and U:

∂ρΠ

∂t
+∇ · (ρUΠ) = U · (∇ · σ) + ρ

M∑
k=1

Yk (gk ·U) . (A.6)

Subtracting Equation (A.6) from (A.5), the thermal enthalpy equation is obtained:

∂ρh

∂t
+∇ · (ρUh) =

∂p

∂t
+∇ · J + [∇ · (τ ·U)−U · (∇ · σ)] + Φ , (A.7)

using the definition of σ and after some algebra shown below

∇ · (τ ·U)−U · (∇ · σ) = [τ : ∇U + (∇ · τ) ·U]− [(∇ · τ)−∇p] ·U

= τ : ∇U + U · ∇p ,
(A.8)

the conservation equation for the thermal enthalpy becomes:

∂ρh

∂t
+∇ · (ρhU) =

Dp

Dt
+∇ · J + τ : ∇U + Φ . (A.9)
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The relation between thermal and sensible enthalpy is

h = hs +
M∑
k=1

∆h0
f,kYk . (A.10)

Subtituing into J and then in (A.9):

J = κ∇T − ρ
M∑
k=1

hs,kVkYk︸ ︷︷ ︸
Js

−ρ
M∑
k=1

∆h0
f,kVkYk

= Js − ρ
M∑
k=1

∆h0
f,kVkYk .

(A.11)

∂ρhs
∂t

+∇ · (ρhsU) =

−
M∑
k=1

∆h0
f,k

[
∂ρYk
∂t

+∇ · (ρ (U + Vk)Yk)

]

+
Dp

Dt
+∇ · Js + τ : ∇U + Φ .

(A.12)

Using the species conservation equation to substitute the terms inside the brackets,

the final form of sensible enthalpy equation is obtained:

∂ρhs
∂t

+∇ · (ρhsU) = ωH +
Dp

Dt
+∇ · Js + τ : ∇U + Φ (A.13)

where ωH is the heat released in combustion (or some chemical reaction):

ωH = −
M∑
k=1

∆h0
f,kSY k . (A.14)
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A.2 Extra Figures

FIGURE A.1: Temperature of droplets. The computational domain is only half of the
shown above, it is here mirrored for visualization purpose.
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FIGURE A.2: Magnitude of droplet velocities. The computational domain is only half of
the shown above, it is here mirrored for visualization purpose.
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FIGURE A.3: Gas mean temperature field T̃ . The computational domain is only half of
the shown above, it is here mirrored for visualization purpose.
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FIGURE A.4: Gas mean velocity magnitude |Ũ|. The computational domain is only half
of the shown above, it is here mirrored for visualization purpose.
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FIGURE A.5: Gas mean turbulent kinetic energy. The computational domain is only half
of the shown above, it is here mirrored for visualization purpose.
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FIGURE A.6: Mean of acetone vapor mass concentration - Ỹac. The computational
domain is only half of the shown above, it is here mirrored for visualization purpose.
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A.3 Equation Discretization and PISO Algorithm

FIGURE A.7: Finite volume discretization, reproduced from (OPENCFD, 2008).

A brief explanation of PISO algorithm and equation discretization as used in this work

is here presented. The notation of equations follow OpenFOAM formulation explained in

(JASAK, 1996).

Superscripts o and n denote values from previous and current time-steps, respectively.

* and ** subscripts are used to denote intermediate fields computed before the final value

of the time-step.

Subscripts P and N denote values stored in the center of owner and neighbor cells.

See Figure A.7 for the geometric representation of two neighboring cells.

Subscript f indicates values interpolated from cell center to a face center. Advective

terms were interpolated using the simple upwind scheme. The linear scheme was used for

remaining interpolations. Setup of fvSchemes input file is presented after PISO algorithm.
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Beginning of a new time-step:

• Evolve spray: move droplets and compute new spray source terms using old gas

properties.

• Solve continuity equation for first density estimate ρ̄∗:

ρ̄∗ − ρ̄o

∆t
VP +

∑
f

F o = SmVP , (A.15)

where F o is the mass flow through cell faces from previous time-step:

F o =
(
ρ̄oŨo

)
f
· Sf . (A.16)

This equation provides an explicit formulation for ρ̄∗.

• Solve momentum equation for first velocity estimate U∗ (momentum predictor):

ρ̄∗Ũ∗ − ρ̄oŨo

∆t
VP +

∑
f

F oŨ∗f =
∑
f

τ̃f · Sf + (ρ̄∗g + Smom)VP −
∑
f

p̄o2,fSf (A.17)

where

τ̃ =
∑
f

(
µeff∇Ũ∗

)
f
· Sf︸ ︷︷ ︸

implicit

−
∑
f

µeff,f

[
∇Ũo,T − 2

3

(
∇ · Ũo

)
I

]
f

· Sf︸ ︷︷ ︸
explicit

(A.18)

The equation may be rewritten in a reduced semi-discretized form as:

Ũ∗P =
1

aP
H(Ũo)− 1

aP
∇p̄2 . (A.19)
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• Solve species equation for Ỹ n
k :

ρ̄∗Ỹ n
k − ρ̄oỸ o

k

∆t
VP +

∑
f

F oỸ n
k,f =

∑
f

(
µeff∇Ỹ n

k

)
f
· Sf + SY kVP (A.20)

• Solve enthalpy equation for h̃ns :

ρ̄∗h̃ns − ρ̄oh̃os
∆t

VP +
∑
f

F oh̃ns,f =
∑
f

(
µeff∇h̃ns

)
f
· Sf + ShsVP (A.21)

The computation of new pressure (p̄n) and velocity (Ũn) fields is performed in a

iterative manner shown in next page.
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PISO Loop (pressure-velocity coupling)

Update ρ with state equation using new temperature: ρ̄∗∗ = p0W̃/RT̃ n ;

Compute second estimate of velocity (U∗∗) without pressure contribution:

Ũ∗∗P =
1

aP
H(Ũ∗) ; (A.22)

Update mass flow through cell faces using new density and velocity:

F ∗ =
(
ρ̄∗∗Ũ∗∗

)
f
· Sf ; (A.23)

Solve pressure equation for the new dynamic pressure field p̄n2 :

∑
f

[
F ∗ − Sf ·

(
ρ̄∗∗

aP
∇p̄n2

)
f

]
= SmVP ; (A.24)

Solve continuity equation for new density (ρ̄n) with F ∗:

ρ̄n − ρ̄o

∆t
VP +

∑
f

F ∗ = SmVP ; (A.25)

Compute the new velocity (Ũn) adding pressure contribution (momentum-corrector)

and update mass fluxes:

Ũn = Ũ∗∗ − 1

aP

∑
f

p̄n2,fSf , (A.26)

F n =
(
ρ̄nŨn

)
f
· Sf . (A.27)
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PISO loop may be repeated inside the same time-step by setting Ũn = Ũo and performing

all steps again.
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Setup of discretization schemes in fvSchemes input file:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format binary;

class dictionary;

location "system";

object fvSchemes;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default none;

//pEqn.H, velocity correction in PISO.

grad(pd) Gauss linear;

// strain tensor

grad(U) Gauss linear;

}

divSchemes

{

default none;

div(phi,rho) Gauss upwind;

div(phi,U) Gauss upwind;

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div(phi,Yi_h) Gauss upwind; // divergent scheme for Yk and hs

div((muEff*dev2(grad(U).T()))) Gauss linear;

}

laplacianSchemes

{
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default none;

//UEq.H

laplacian(muEff,U) Gauss linear uncorrected;

//YEq.H

laplacian(muEff,aC3H6O) Gauss linear uncorrected;

laplacian(muEff,N2) Gauss linear uncorrected;

laplacian(muEff,O2) Gauss linear uncorrected;

laplacian(muEff,CO2) Gauss linear uncorrected;

laplacian(muEff,H2O) Gauss linear uncorrected;

//hsEq.H

laplacian(alphaEff,hs) Gauss linear uncorrected;

//pEq.H

laplacian((rho*(1|A(U))),pd) Gauss linear uncorrected;

//epsEq <kEpsilon.C>

laplacian(DepsilonEff,epsilon) Gauss linear uncorrected;

//kEq <kEpsilon.C>

laplacian(DkEff,k) Gauss linear uncorrected;

}

interpolationSchemes

{

default linear;

interpolate(HbyA) linear;

}

snGradSchemes

{

default uncorrected;

}

fluxRequired

{

default no;

pd;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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Pulverizadores; Escoamento multifásico; Combustão; Método de volumes finitos; Análise numérica; Simulação
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